Estequiometria com Exemplos Práticos

ESTEQUIOMETRIA

Estequiometria é a parte da Química que estuda as proporções dos elementos que se combinam ou que reagem.

 

MASSA ATÔMICA (u)

É a massa do átomo medida em unidades de massa atômica (u).
A massa atômica indica quantas vezes o átomo considerado é mais pesado que do isótopo C12.
Na natureza, quase todos os elementos são misturas dos seus isótopos com diferentes porcentagens em massa. Estas porcentagens são chamadas de abundâncias relativas.

Veja a abundância relativa do cloro:

Isótopo

Abundância Relativa

Massa Atômica

Cl35

75,4%

34,969 u

Cl37

24,6%

36,966 u

 

A massa atômica do cloro que aparece na Tabela Periódica dos Elementos é a média ponderada destas massas. O cálculo é feito desta maneira:

Veja a porcentagem dos isótopos do hidrogênio na natureza:

           1H1 1H²

1H³

    99,9% 0,09%

0,01%

Hidrogênio Deutério

Trítio

 

Antigamente, utilizava-se o termo “peso atômico”. Mas deve-se evitar este termo. Para determinar as massas atômicas dos elementos é utilizado um aparelho chamado espectrômetro de massas.

 

MASSA MOLECULAR (MM)

É a massa da molécula medida em unidades de massa atômica. Para cálculos estequioméricos, utliza-se a unidade gramas (g).
O cálculo da massa molecular é feito a partir das massas atômicas dos elementos e a soma dos seus átomos na molécula.
Assim:

H2O (água)

O = 1x 16 = 16
H = 2 x 1 = 2
MM = 16 + 2 = 18g ou 18u

Na fórmula da água há 1 átomo de O que é multiplicado pela sua massa atômica (16), resultando em 16.
Há dois átomos de H que é multiplicado pela sua massa atômica (1), resultando em 2.
Estes resultados são somados e desta forma encontramos o valor da massa molecular, 18g ou 18u.

Veja outros exemplos:

CO2 (dióxido de carbono)

O = 2 x 16 = 32
C = 1 x 12 = 12
MM = 32 + 12 = 44g ou 44u

C12H22O11 (sacarose)

O = 11 x 16 = 176
H = 22 x 1 = 22
C = 12 x 12 = 144
MM = 176 + 22 + 144 = 342g ou 342u

Mg(OH)2  (hidróxido de magnésio)

H = 2 x 1 = 2
O = 2 x 16 = 32
Mg = 1 x 24 = 24
MM = 2 + 32 + 24 = 58g ou 58u

Ca(NO3)2  (nitrato de cálcio)

O = 6 x 16 = 96
N = 2 x 14 = 28
Ca = 1 x 40 = 40
MM = 96 + 28 + 40 = 164g ou 164u

CuSO4.5H2O (sulfato cúprico penta-hidratado)

O = 5 x 16 = 80
H = 10 x 1 = 10
O = 4 x 16 = 64
S = 1 x 32 = 32
Cu = 1 x 63,5 = 63,5
MM = 80 + 10 + 64 + 32 + 63,5 = 249,5g ou 249,5u

Fórmula Mínima

É uma fórmula que fornece o número relativo entre os átomos da substância.
Mostra a proporção em número de átomos dos elementos expressa em número inteiros e os menores possíveis.

Veja a fórmula mínima de algumas substâncias e sua fórmula moleculares:

Substância

Fórmula Molecular

Fórmula Mínima

Água Oxigenada

H2O2

HO

Glicose

C6H12O6

CH2O

Ácido Sulfúrico

H2SO4

H2SO4

Geralmente, as fórmulas mínimas são uma “simplificação matemática” da fórmula molecular. A água oxigenada pode ser dividida por 2 formando a fórmula mínima acima. Na glicose, a fórmula molecular foi dividida por 6 e no ácido sulfúrico, não é possível dividir por um número inteiro, então a fórmula mínima fica igual à fórmula molecular.

Composição Centesimal ou Análise Elementar

A fórmula centesimal fornece o percentual dos átomos que compõe a substância.
Representa a proporção em massa que existe na substância. É sempre constante e segue a Lei de Proust.

Exemplo:

C: 85,6%
H: 14,4%

Veja como calcular a fórmula centesimal a partir de dados obtidos da análise da substância:

A análise de 0,40g de um certo óxido de ferro revelou que ele possui 0,28g de ferro e 0,12g de oxigênio. Qual é a sua fórmula centesimal?

x = 70% de Fe

  x = 30%

Então, neste óxido possui 70% de Fe e 30% de O.

 

MOL

A palavra mol foi utilizada pela primira vez pelo químico Wilhem Ostwald em 1896. Em latim, esta palavra significa mole, que significa”monte”, “quantidade”. A partir desta palavra também originou molécula, que quer dizer pequena quantidade.

Algumas mercadorias são vendidas em quantidades já definidas, como por exemplo a dúzia (12), a resma (500), etc.

O mol também determina quantidade. Pode determinar também massa e volume. Veja o esquema a seguir:

O mol indica quantidade. Um mol de qualquer coisa possui 6,02.1023 unidades. É utilizado em química para referir-se à matéria microscópica, já que este número é muito grande. Pode ser usado para quantificar átomos, moléculas, íons, número de elétrons, etc.
O número 6,02.1023 é a constante de Avogadro.

Exemplos:

1 mol de átomos de H tem 6,02.1023 átomos.
2 mol de átomos de H tem 2 x 6,02.1023 átomos = 12,04.1023 átomos de H

O mol indica massa. Um mol de um elemento é igual a sua massa molecular em gramas (g).

Exemplos:

1 mol de água tem 18g
2 mol de água tem 2 x 18 = 36g

O mol indica volume. Na realidade, indica o volume ocupado por um gás nas CNTP (condições normais de temperatura e pressão). Para gases que estão nestas condições, o valor de um mol é 22,4L (litros).

CNTP:
T=0°C = 273K
P = 1atm = 760mmHg

Exemplos:

1 mol de CO2 ocupa que volume nas CNTP? 22,4L
2 mol de CO2 ocupa que volume nas CNTP? 2 x 22,4L = 44,8L

Para gases que não estão nestas condições, utiliza-se a fórmula do Gás Ideal ou Equação de Clapeyron:

P.V = n.R.T

Onde:
P = pressão do gás (atm)
V = volume do gás (L)
n = número de mols do gás (mol)
R = constante de Clapeyron = 0,082atm.L/mol.K
T = temperatura do gás (K)

 

ESTEQUIOMETRIA COMUM / ESTEQUIOMETRIA DA FÓRMULA:

Os cálculos estequiométricos são cálculos que relacionam as grandezas e quantidades dos elementos químicos. Utiliza-se muito o conceito de mol nestes cálculos.
É muito importante saber transformar a unidade grama em mol. Pode-se usar a seguinte fórmula:


Onde:
n = número de mol (quantidade de matéria)
m = massa em gramas
MM = massa molar (g/mol)

Exemplo:

Quantas gramas existem em 2 mol de CO2?
                            

Este cálculo pode ser feito também por Regra de Três:

Para os cálculos com regra de três, sempre devemos colocar as unidade iguais uma embaixo da outra, como no exemplo acima.

Outros exemplos de cálculos estequiométricos envolvendo apenas a fórmula química:

  1. Quantos mols há em 90g de H2O?

 


90 = 18. x

5 mol = x

  1. Quantas moléculas de água há em 3 mol de H2O?

 

x = 3 . 6,02.1023
x = 18,06. 1023 ou 1,806.1024 moléculas

3) Qual o volume ocupado por 4 mol do gás Cl2 nas CNTP?

x  = 4 x 22,4
x = 89,6L

4) Quantos mols existem em 89,6L do gás CO2 nas CNTP?


x = 4 mol

 

ESTEQUIOMETRIA DA EQUAÇÃO QUÍMICA

Os cálculos estequiométricos que envolvem uma reação química consiste em encontrar as quantidades de certas substâncias a partir de dados de outras substâncias que participam da mesma reação química.
Estes cálculos são feitos através de proporções. Deve-se levar em conta os coeficientes, que agora serão chamados de coeficientes estequiométricos.

Veja alguns passos que podem ser seguidos para montar e calcular:

1. fazer o balanceamento da equação química (acertar os coeficientes estequiométricos);
2. fazer contagem de mol de cada substância;
3. ler no problema o que pede;
4. relacionar as grandezas;
5. calcular com regra de três (proporção).

Exemplos:
1) 108g de metal alumínio reagem com o ácido sulfúrico, produzindo o sal e hidrogênio, segundo a reação abaixo:


Determine:
a) o balanceamento da equação:

Isto quer dizer que 2 mol de Al reage com 3 mol de H2SO4 reagindo com 1 mol de Al2(SO4)3 e 3 mol de H2

b) a massa o ácido sulfúrico necessária para reagir com o alumínio:
1°) passo:                                      2°) passo:
           
                                         
                         

3°) passo:

 x = 588g de H2SO4

Relacionar a massa de ácido com a massa de alumínio, como no 3° passo. Antes, no 1° e no 2°passo, transformar o número de mol em gramas.

 

CÁLCULO DE PUREZA

O cálculo de pureza é feito para determinar a quantidade de impurezas que existem nas substâncias.
Estes cálculos são muito utilizados, já que nem todas as substâncias são puras.

Exemplo:

Uma amostra de calcita, contendo 80% de carbonato de cálcio, sofre decomposição quando submetida a aquecimento, de acordo com a reação:

Qual massa de óxido de cálcio obtida a partir da queima de 800g de calcita?

x = 640g de CaCO3

Para o restante do cálculo, utiliza-se somente o valor de CaCO3  puro, ou seja, 640g.


x = 358,4g de CaO

CÁLCULO DE RENDIMENTO

É comum, nas reações químicas, a quantidade de produto ser inferior ao valor esperado. Neste caso, o rendimento não foi total. Isto pode acontecer por várias razões, como por exemplo, má qualidade dos aparelhos ou dos reagentes, falta de preparo do operador, etc.
O cálculo de rendimento de uma reação química é feito a partir da quantidade obtida de produto e a quantidade teórica (que deveria ser obtida).
Quando não houver referência ao rendimento de reação envolvida, supõe-se que ele tenha sido de 100%.

Exemplo:

Num processo de obtenção de ferro a partir do minério hematita (Fe2O3), considere a equação química não-balanceada:

Utilizando–se 480g do minério e admitindo-se um rendimento de 80% na reação, a quantidade de ferro produzida será de:

Equação Balanceada:
Dados:  1Fe2O3 = 480g
2Fe = x (m) com 80% de rendimento
MM Fe2O3 = 160g/mol
MM Fe = 56g/mol


x = 336g de Fe

Cálculo de Rendimento:


x = 268,8g de Fe

 

 

CÁLCULO DO REAGENTE LIMITANTE E EM EXCESSO:

Para garantir que a reação ocorra e para ocorrer mais rápido, é adicionado, geralmente, um excesso de reagente. Apenas um dos reagentes estará em excesso. O outro reagente será o limitante.
Estes cálculos podem ser identificados quando o problema apresenta dois valores de reagentes. É necessário calcular qual destes reagentes é o limitante e qual deles é o que está em excesso. Depois de descobrir o reagente limitante e em excesso, utiliza-se apenas o limitante como base para os cálculos estequiométricos.

Exemplos:

1) Zinco e enxofre reagem para formar sulfeto de zinco de acordo com a seguinte reação:

Reagiu 30g de zinco e 36g de enxofre. Qual é o regente em excesso?

Balancear a reação química:
Dados:
Zn = 30g
S = 36g

Transformar a massa em gramas para mol:
             
                                     

                      

Pela proporção da reação 1mol de Zn reage com 1mol de S.
Então 0,46mol de Zn reage com quantos mols de S?
Pode ser feita uma regra de três para verificar qual regente está em excesso:

x = 0,46mol de S

Então 1mol de Zn precisa de 1mol de S para reagir. Se temos 0,46mol de Zn, prrecisamos de 0,46mol de S, mas temos 1,12mol de S. Concluimos que o S está em excesso e, portanto o Zn é o regente limitante.

2) Quantos gramas de ZnS será formado a partir dos dados da equação acima?

Para resolver esta pergunta, utiliza-se somente o valor do reagente limitante.


x = 44,68g de ZnS

Algumas constantes e conversões úteis:

1atm = 760mmHg = 101325Pa
1Torr = 1mmHg

R= 0,082atm.L/mol.K
R= 8,314/mol.K
R= 1,987cal/mol.K

Número de Avogadro: 6,02.1023

1mL = 1cm³
1dm³ = 1L = 1000mL

1000Kg = 1ton
1Kg = 1000g
1g = 1000mg

1nm = 1.10-9m

 

 

 

Deixe uma Resposta

Preencha os seus detalhes abaixo ou clique num ícone para iniciar sessão:

Logótipo da WordPress.com

Está a comentar usando a sua conta WordPress.com Terminar Sessão /  Alterar )

Google photo

Está a comentar usando a sua conta Google Terminar Sessão /  Alterar )

Imagem do Twitter

Está a comentar usando a sua conta Twitter Terminar Sessão /  Alterar )

Facebook photo

Está a comentar usando a sua conta Facebook Terminar Sessão /  Alterar )

Connecting to %s